Enthusiast Gamer
Enthusiast GamerYou would think this build would be the easiest to configure as it is the money-is-not-a-consideration option. It would be except I don't fly that way. While this one will be expensive, as I mentioned in the overview, I won't go out of the way to include components that increase the price without a good reason. This is the system I would buy if I had a big budget to work with, but I will always want to feel I haven't wasted money to get the absolute pinnacle of products. Expect systems in this range to break the $3,000 price level. Twice that isn't out of the question, but it would have to be one heck of a system.
2015 - 07 (July) Enthusiast Build
2015 - 07 (July) Enthusiast BuildAs mentioned in the introduction, all prices are from PC Part Picker unless explicitly specified otherwise. No special prices (e.g., after mail-in-rebate prices or combo prices) are included if that can be avoided. If you are a conscientious rebater, you may be able to spend a bit less. I will include the PC Part Picker link at just below the table that tallies up all the prices. You should be able to load these items in your cart using the link and get them at or near the prices quoted. In the enthusiast build, I'm trying to build the most cost effective top-end system I can imagine. I don't really have a firm limit here, but expect it to be more than $2,000 and less than $6,000.
My current choice in this category is the Intel Core i7-5930K. This is the middle of the three new LGA2011-3 socket parts introduced by Intel last year. It is unlocked for easier overclocking, uses DDR4 memory in a quad-channel bus (requiring four sticks of matched memory DIMMs rather than two like dual-channel memory), has six cores (with twelve threads) and 40 PCIe 3.0 lanes.
A lot of people would argue that the 5820K is all that's needed, but I'm planning on going with 2-way SLI initially with room to go up to 4-way SLI later. The 5820K PCIe lanes are pared back to 28 from 40. If we were only gaming on a 1080p monitor with a single graphics card, 28 lanes are plenty. My belief is that a system at this level should be paired with at least a 1440p (2560 x 1440 pixels) or more likely, a 4K monitor (3840 x 2160 pixels) and dual Nvidia GTX 980 Ti graphics cards in SLI. I think those lanes are going to be pretty darn handy.
In addition to SLI, we're going to pair this with a closed-loop water-based CPU cooler and a gaming motherboard that both aid in overclocking. We may not be doing any overclocking from day one, but we will have the option available and incredible cooling either way. This CPU goes for $560.
Good resources to check out the benchmark scores are Tom's Hardware's Best Gaming CPUs For The Money article (June 2015) and Anandtech's CPU Benchmarks.
Unlike other Intel CPUs, these don't come with any stock cooler. Intel surmised (correctly, in my opinion) that people building with these CPUs aren't interested in a stock CPU fan and heatsink. Instead, they will want to use their preferred air or water-based system. For this build, I'm using a Cooler Master Nepton 280L (RL-N28L-20PK-R2) closed-loop water CPU Cooler. Reviews on this liquid CPU cooler have be very positive and the $120 price tag is reasonable. It does take a bit of room for the pair of fans and a radiator, but we are using a case with lots of room.
When it comes to enthusiast builds, I like Asus. While Gigabyte and MSI have very good boards is this arena, Asus wins my head and heart. Their ROG series has more tweaks than I will likely understand. Even their low-end enthusiast boards have the key features that makes the board stable and overclockable. Also, Asus really loves to promote their products. You will find Asus reps at gaming conventions and talking on hardware sites. I get the sense they really understand the enthusiast community and love what they do.
I want a motherboard here that makes every tweak I've ever heard of and a few I haven't. I also want more ports than I can ever use. The Asus Rampage V Extreme/U3.1 is an enthusiast's dream in those regards. It is a based on an Intel X99 chipset. That board has twelve SATA 6Gb/s ports, two SATA Express ports, an M.2 (Gen 3.0) socket, 8 DIMM slots, five PCIe 3.0 x16 slots, two USB 3.1 slots (in the form of an expansion card), ten USB 3.0 ports on the back I/O panel plus four more (two headers) placed in the middle of the board near the SATA 6 connectors (for front-panel case connectors), two USB ports on the back I/O panel plus four more (two headers) on the motherboard.
This motherboard also comes with OC Panel, which is an overclocking tool that can be handheld or converted to be mounted in a 5.25-inch drive bay. The tool displays several overclocking values, can be used to apply overclocking profiles, control fan speeds and more. It also has built-in 802.11 a/b/g/n/ac wireless networking (whether you want it or not) and Bluetooth 4.0. The integrated sound has several features to work with up to 7.1 speakers and a feature to improve audio when using a headset (via the front panel audio). This isn't even a complete list of all the features.
Rather than repeat it here, see my rant against AMD cards in the GPU section of the budget build.
For this build, I'm going with a pair of Nvidia GTX 980 Ti graphic cards in SLI. This motherboard supports two cards in X16 mode (requiring 32 PCIe lanes). As my favorite video card vendor at the moment is EVGA, for this build, I picked the EVGA GeForce GTX 980 Ti Superclocked ACX 2.0+ (06G-P4-4993-KR) which is overclocked at the factory from the base specifications. Each card has a dual cooling fan unit and has an HDMI port, three Display Ports and one DVI-I port. Each can handle up to four monitors simultaneously, but our target in this build is to be able to support a single 4K resolution monitor (3840 x 2160 pixels). Each card requires two 8-pin PCI-E connectors. That implies a maximum allowable draw on the 12V rail of 75W (supplied by the motherboard) + 150W (1st 8-pin PCI-E) + 150W (2nd 8-pin PCI-E) for 375W total. However, at EVGA's web site, they claim the card draws 250W max. The extra power is there for overclocking headroom.
This motherboard sports eight slots supporting two banks of DDR4 memory in a quad-channel arrangement. We are going to fill half of those with 16GB of DDR4-2666 CL13 DIMMs from the Kingston HyperX series (HX426C13PB2K4/16). Technically, a gaming system will run fine on 8GB of RAM, but we want to take advantage of the quad channel architecture and putting four 2GB DIMMs in there just seems silly.
This motherboard has been tested with up to DDR4-3200, but the sweet spot at the moment seems to be DDR4-2666 and the HyperX memory has the best timings on the Qualified Vendor's List for the Asus Rampage V Extreme. Since DDR4 RAM is the new hotness, it hasn't had its price driven down yet, so this is a bit pricey at $225.
No moving parts. Starting off with a screaming fast Samsung SM951 512GB AHCI MZHPV512HDGL-00000 M.2 80mm PCIe 3.0 x4 SSD. I could not find the official data at Samsung, so I offer this TweakTown review instead. This drive has up to 2150/1500 sequential read/write data transfer rates, which is about four times the read speed and three times the write speed of a fast SATA 6Gb/s SSD and so far ahead of rotating hard drives, they aren't worth mentioning. However, this comes at a cost of $370. (Note that PC Part Picker doesn't have a category for this class of SSDs yet, so this was added as a custom part using Newegg's listing. They were $30 cheaper than anyone else I could find. They were $40 cheaper when I first wrote this, but raised the price $10. I better write faster.) It's going to absolutely scream. My system boots in 15 - 20 seconds on a Samsung 830 from a couple years ago; this one should boot before you even finish thinking about it.
Since 512 GB isn't enough storage by itself, let's pair a screaming fast SSD with a pair of fast, large(r) Samsung 850 EVO MZ-75E1T0B/AM 2.5" 1TB SSDs. We can even put those in RAID 0 if we like. That's 2.5 TB of disk space without any rotating hard disk drives. We have plenty of room to add one of those if we need it for video or the like, but the going in stance is SSDs all the way. They go for $360 each, so that's about enough cost for storage.
Wimpy PSUs need not apply here. We have two high-end video cards, a power hungry CPU and motherboard, and they all need unwavering power. PC Part Picker estimates this build at 779W. That doesn't include the M.2 Samsung SM951 512GB drive, which is estimated at 6.5W. If we want a PSU at 50-60% load when this system is running full tilt, that's a 1310W to 1572W PSU. (The PC Part Picker total is an estimate of the power required by the build. If you click on the estimate, a list is displayed with the min to max numbers they used to make the estimate.)
I still want a PSU with a single 12V rail and semi-modular connections (or fully modular, but that's rather a bit of overkill). The single rail keeps me from having to figure out how to balance the load across the connections. A modular PSU lets me use only the power connectors I actually need. I have picked the EVGA SuperNOVA G2 1600W 80+ Gold Certified Fully-Modular PSU for this build. At $325, it alone costs half of what some complete systems cost, but it is what this type of system deserves.
A system this good should be cuddled inside a killer case. I actually wanted to go with something a bit snazzier, but I really couldn't find one that had the right amount of pizazz without looking gaudy. At one time, there were a number of companies doing custom painted cases, but I wasn't able to find one still left in the business that had something as big as I was looking for. I eventually settled on the subtle, but still great-looking Corsair 900D ATX Full Tower Case. The black brushed aluminum front looks quite professional - like this is not a system to be triffled with. At $340, it's not cheap, but then cases built like tanks are bound to cost more.
This case is tall and deep - 25.60" long x 9.90" wide x 27.20" high. It's all aluminum on the outside with a steel frame and weighs 41 lbs empty. It can handle a pair of PSUs or a PSU and a water-cooling system reservoir. It has room for nine 3.5" or 2.5" drives (or up to fifteen with the purchase of additional drive cages) and four 5.25" optical drives. It has fifteen fan mounting locations for regular fans or less if one or more of the five radiator mount points is used. There are four USB 2.0 ports and two USB 3.0 ports on the front (which I wish was the other way around) tucked in behind a closeable panel at the top. Dust filters cover all the air intakes to keep the bunnies out. There's cable management everywhere there needs to be. Any build into this case will have plenty of room and should be able to be made quite tidy.
Even though an optical drive is pretty much an optional part nowadays, if we are going to have a 4K monitor with this system, it should be able to play the occasional Blu-ray movie. Since the LG 16X BD-R 2X BD-RE SATA Blu-ray burner (WH16NS40) is under $60, there's no reason not to have one in a system of this sort. If you find you need to back up 100-128 GB of data on a reasonably permanent medium, this burner can to that - at $12 - $27 a disc.
While I still like sound cards and think they produce better sound than on-board audio, I found myself convinced by Asus YouTube videos on this motherboard that there's really no reason to go there. The on-board sound supplied by this motherboard sounds excellent on paper, and if it doesn't pan out, there's plenty of room to add one later.
Take your choice of Windows 7 (Home Premium SP1 64-bit) or Windows 8.1 64-bit - OEM. Both are about $100. I use Windows 8.1 because it understands how to tread SSDs better, but pick either one. You're going to take the free upgrade to Windows 10 in a few months anyway. Do get the 64-bit version of whichever one you pick.
The prices given below are static and are the ones captured when this was written. Click on the link below the table to load the list into the PC Part Picker system builder.
Component | Description | Cost |
---|---|---|
CPU | Intel Core i7-5930K 3.5GHz 6-Core Processor | 560 |
CPU Cooler | Cooler Master Nepton 280L 122.5 CFM Liquid CPU Cooler | 120 |
Motherboard | Asus RAMPAGE V EXTREME/U3 EATX LGA2011-3 | 516 |
GPU |
2 - EVGA GeForce GTX 980 Ti 6GB Superclocked ACX 2.0+
($650 times two for 2-Way SLI) |
1300 |
Memory | Kingston 16GB (4 x 4GB) DDR4-2666 | 225 |
Storage | SAMSUNG SM 951 MZHPV5 12HDGL 512 GB M.2 SSD 2 - Samsung 850 EVO-Series 1TB 2.5" Solid State Drive ($360 X 2) |
370 720 |
Sound Card | Stock (motherboard - believe it or not) | 0 |
Optical Drive | LG WH16NS40 Blu-Ray/DVD/CD Writer | 50 |
PSU | EVGA SuperNOVA G2 1600W 80+ Gold Certified Fully-Modular | 325 |
Case | Corsair 900D ATX Full Tower Case | 340 |
OS | Microsoft Windows 8.1 OEM (64-bit) | 97 |
Total | 4623 |
OK. This one is a bit higher than my usual "money is no object" system at $4623. The dual GTX 980 Ti are a bit of a splurge. They would be wasted on less than a 4K monitor. Going with all SSDs is another high dollar decision, but I absolutely, positively won't build another system for myself that isn't using SSDs for booting and the primary storage. I'm able to get by with 1.5TB on my own desktop, but that's not the point. With this much SSD space, there won't be much of a reason to worry. If more space is needed, there's room for three or four hard disk drives in addition to the SSDs. It's a lot of money, but I don't think any of it is wasted. To see the current prices for these components, check the link to the PC Part Picker list.
If I were to build this system, I would want to pair it with a strong 4K monitor. The Asus PQ321Q 31.5" UHD monitor would probably be my first choice at the moment. That said, at $1400, it makes this system - already pricey - downright expensive at about $6K.
2016 - 03 (March) Enthusiast Build
2016 - 03 (March) Enthusiast BuildAs mentioned in the introduction, all prices are from PC Part Picker unless explicitly specified otherwise. No special prices (e.g., after mail-in-rebate prices or combo prices) are included if that can be avoided. If you are a conscientious rebater, you may be able to spend a bit less. I will include the PC Part Picker link at just below the table that tallies up all the prices. You should be able to load these items in your cart using the link and get them at or near the prices quoted. In the enthusiast build, I'm trying to build the most cost effective top-end system I can imagine. I don't really have a firm limit here, but expect it to be more than $2,000 and less than $6,000.
I have to say that at this moment in time, I'm kind of stumped. The new Skylake processors have been out for a while, but LGA1151 chipsets like the Z170 have only 20 PCIe lanes and dual-channel memory support whereas the LGA 2011-v3 chipset has 40 PCIe lanes and has quad-channel memory support of the LGA 2011-v3 chipset . My going in stance was because of what I perceived as those shortcomings, the Intel Core i7-5930K would kick the Intel Core i7-6700K's butt. After all, the 5930K also has six (albeit slower) cores (with twelve threads). However, all the benchmarks I can find say it ain't so for at least for systems with single and dual (SLI) GTX 980 Ti graphics card.
My stance is that a system at this level should be paired with at least a 1440p (2560 x 1440 pixels) monitor or more likely, a 4K monitor (3840 x 2160 pixels). While a single Nvidia GTX 980 Ti can handle 1440p reasonably, we will want dual Nvidia GTX 980 Ti graphics cards in SLI for 4K and above resolution. I though having 16 dedicated PCIe lanes per card were a requirement, but the numbers just don't reflect that. Triple or quad SLI systems probably still require a LGA 2011-v3 chipset's 40 PCIe lanes. There are no games out there that really require that kind of power, so triple and quad setups exist primary because they can and have the bragging rights. So, in a major departure at the moment - at least until I see the numbers from Skylake-E processors later this year - I think the Intel Core i7-6700K is the way to go. That means I'm looking at a $370 CPU instead of a $560 CPU.
In addition to SLI, we're going to pair this with a closed-loop water-based CPU cooler and a gaming motherboard that both aid in overclocking. We may not be doing any overclocking from day one, but we will have the option available and incredible cooling either way. Good resources to check out the benchmark scores are Tom's Hardware's Best Gaming CPUs For The Money article (June 2015) and Anandtech's CPU Benchmarks.
Unlike most CPUs, these don't come with any stock cooler. Intel surmised (correctly, in my opinion) that people building with these CPUs aren't interested in a stock CPU fan and heatsink. Instead, they will want to use their preferred air or water-based system. For this build, I'm using a NZXT Kraken X61RL-KRX61-01 closed-loop water CPU Cooler. Reviews on this liquid CPU cooler have be very positive, it comes with a six-year warranty and the $140 price tag is reasonable. It does take a bit of room for the pair of fans and a radiator, but we are using a case with lots of room. Here are reviews from Tweaktown and HardOCP.
Once I pick the CPU, the motherboard is next, and is generally it is not hard for me to choose one. I have mentioned before that when it comes to enthusiast builds, I prefer Asus. Their ROG series has more tweaks than I will likely understand. The price range I tend to look for for this build is $250 as a rough starting point and up to the cost of the CPU (which is $370 in this build). I will go higher if there's it gets me a feature I want to take advantage of, but spending more on the motherboard than on the CPU just seems somehow. I also feel it's wrong to spend less than 1/2 the cost of the CPU on one.
Looking at the Asus offerings in this range, we have the ASUS ROG MAXIMUS VIII FORMULA, ASUS ROG MAXIMUS VIII HERO ALPHA, ASUS Z170-DELUXE and ASUS ROG MAXIMUS VIII HERO. However, each of those models seem to be having quality issues. It's rare to see users report such a high rate of build problems on so many models, which includes quite a few DOAs. I also considered the ASUS SABERTOOTH Z170 MARK 1, but while it seems to be having fewer build issues, the memory speeds supported seem artificially neutered at around 2400MHz-2666MHz maximum. (It still has the high grade components as earlier SABERTOOTH models, so my only guess is that it is artificially limit so that it doesn't compete with the ROG models.)
Next, I looked at Gigabyte's offerings, which includes the GIGABYTE G1 GA-Z170X-Gaming 7 at around $200, the GIGABYTE GA-Z170X-UD5 TH (where the "TH" stands for Thunderbolt) also at about $200, the GIGABYTE G1 GA-Z170X-Gaming GT at $230 and then a big empty hole until the GIGABYTE GA-Z170X-SOC FORCE at $380 and the GIGABYTE G1 Gaming GA-Z170X-Gaming G1 at $480. The GA-Z170X-SOC FORCE comes with all the overclocking bells and whistles you could want including the largest number of buttons on a motherboard I've ever seen, 22 phases of power filtering, 4-way SLI support, three M.2 devices, very high memory overclocking and much more. However, several professional and customer reviews mentioned that the board has issues recognizing USB devices during the boot - including the keyboard and mouse - until they are disconnected and reinserted (in other USB ports by some accounts).(Interestingly, most assumed it was an issue with their keyboard and mouse and not the board in general.) That's a daily headache I don't need.
The choice I finally decided upon this is the GIGABYTE G1 GA-Z170X-Gaming 7. I almost feel like I have to apologize for how little it costs, however I won't. It's got everything I need for the high-end build I have in mind. So much so, I wonder why it is only $200. It inherits a lot from its (much) higher-priced sibling, the Gaming G1. The motherboard has dual PCIe Gen3 x4 M.2 slots supporting up to 32Gb/s data transfer per slot with PCIe NVMe SSDs (as well as SATA and AHCI support). These two slots support RAID configurations, and an insanely fast RAID 0 set up is what I have in mind for this build. Other storage support includes 3 SATA Express connectors (which I don't see any use for at this time), six SATA 6Gb/s connectors from the Z170 chipset plus two more SATA 6Gb/s connectors from the ASMedia ASM1061 (supporting AHCI mode only).
This board has dual GB NIC for Ethernet connections. One uses the Intel Gigabit LAN controller and the other users a Rivet Networks Killer 2400. The latter is supposed to offer better online gaming and media performance, but the Intel chip is no slouch either. The two NICs cannot be teamed, but I'm not a big believer in that anyway. I'm not convinced there's any advantage to pairing two gigabit LAN connections to a 60 Mb/s spout. If I did a lot of competitive gaming on a local LAN, I would care.
The motherboard supports dual graphics cards in Crossfire or SLI (in PCIe x8 x8) and three graphics cards in Crossfire (in PCIe x8 x4 x4). However, when using the second M.2 slot (M2H_32G), the PCIE x4 slot is no longer usable, so triple-Crossfire would not be an option. Not to worry as my intent is to go with two Nvidia cards in SLI.
Memory-wise, the Gaming 7 has 4 288-pin DDR4 DIMM slots and supports dual-channel memory mode up to a maximum of 64GB or RAM.
The Gaming 7 has USB connections galore starting with a USB 3.1 Type C connector on the back I/O panel that is Thunderbolt 3 certified, a second Type A USB 3.1 port also on the back panel, five USB 3.0 ports on the back and motherboard headers four more USB 3.0 ports (via the Z170 chipset and a Renesas USB 3.0 hub) and four USB 2.0 ports. I do wish there was (and I believe there is) a way to get the USB 3.1 Type C connector to the front of the machine. I have seen an add-on front panel adapter that does just that.
The onboard sound on the Gaming 7 is a step above what most motherboards are offering. It is using a Creative Sound Core3D quad-core audio processor. As I understand it, this processor is the same or nearly the same as Creative's discrete sound cards. Additionally, it also has what Gigabyte is calling the "AMP-UP Audio Technology that sports an upgradable OP-AMP (but I could not find any available upgrades), high-end audio components, gain boost for the headphone jack and isolated audio circuitry.
This may be the most I've ever written about a motherboard for this section. I'm just amazed at all that $200 can get you. I also took a good hard look at the MSI Z170A XPOWER GAMING TITANIUM for $270, and that would be my second choice. The main thing it offers for the extra $70 is triple and quad SLI support. However, it lacks a second NIC like a Killer NIC. To use the M.2 slots in NVMe mode, additional turbo modules are needed, which seems a bit like gouging to me on a board that's already near the middle to top end in price.
Rather than repeat it here, see my rant against AMD cards in the GPU section of the budget build.
For this build, I'm going with a pair of Nvidia GTX 980 Ti graphic cards in SLI. This motherboard supports two cards in X8 mode (requiring 16 PCIe lanes). As my favorite video card vendor at the moment is EVGA, for this build, I picked the EVGA GeForce GTX 980 Ti FTW GAMING ACX 2.0+ 06G-P4-4996-KR, which is overclocked at the factory from the base specifications. The card has a dual cooling fan unit to keep it cool and has a three-year warranty.
For output ports, each card has an HDMI 2.0 port, three Display Ports (1.2) and one dual link DVI-I port. Each can handle up to four monitors simultaneously, but our target in this build is to be able to support a single 4K resolution monitor (3840 x 2160 pixels). Each card requires two 8-pin PCI-E connectors. That implies a maximum allowable draw on the 12V rail of 75W (supplied by the motherboard) + 150W (1st 8-pin PCI-E) + 150W (2nd 8-pin PCI-E) for 375W total. However, at EVGA's web site, they claim the card draws 275W max. The extra power is there for overclocking headroom if needed. This setup will be able to laugh in the face of a VR headset .. if it had one. Heck, attach two.
This motherboard sports four slots supporting two banks of DDR4 memory in a dual-channel arrangement. We are going to fill half of those with 16GB (as 2x8GB DIMMs) of G.SKILL Trident Z F4-4000C19D-16GTZ rated at a maximum frequency of 4000MHz. The motherboard supports a maximum of 3800MHz memory, and we will likely start around 3200MHz and see what we can comfortably work up to. DDR4 RAM prices have dropped like a rock since its introduction (and the Z170 chipset made it mainstream). Even though this is top-of-the-line memory, it is only $155. I say "only" because last summer this memory would have been upwards of $300 if it existed, which I don't believe it did.
No moving parts. Starting off with a screaming fast Samsung 950 PRO M.2 512GB MZ-V5P512BW, which support NVMe data rates of This drive has up to 2500/1500MBps sequential read/write data transfer rates, which is about four times the read speed and three times the write speed of a fast SATA 6Gb/s SSD and so far ahead of rotating hard drives, they aren't worth mentioning. This comes at the low, low cost of $322. It's going to absolutely scream. My system boots in 15 - 20 seconds with a Samsung 840 from a couple years ago; this one should boot before you even finish thinking about it. I'd like to get a pair of these and run RAID 0 on them, but with the dual graphics cards taking 16 PCIe lanes (in x8 x8 configuration for SLI), I think there's insufficient PCIe lanes for two drives.
Since 512GB isn't enough storage by itself, let's pair screaming fast SSDs with a pair of fast, larger Samsung 850 EVO MZ-75E1T0B/AM 2.5" 1TB SSDs. We can even put those in RAID 0 if we like. That's 2.5TB of disk space without any rotating hard disk drives. We have plenty of room to add one of those if we need it for video or the like, but the going in stance is SSDs all the way. They go for $260 each (down from over twice that a year ago and $50 less than a few months ago), so that's about enough cost for storage.
Wimpy PSUs need not apply here. We have two high-end video cards, a power hungry CPU and motherboard, and they all need unwavering power. PC Part Picker estimates this build at 720W. If we want a PSU at 50-60% load when this system is running full tilt, that's a 1200W to 1440W PSU. (The PC Part Picker total is a worst-case estimate of the power required by the build. If you click on the estimate, a list is displayed with the min to max numbers used to make the estimate.)
I still want a PSU with a single 12V rail and semi-modular connections (or fully modular, but that's rather a bit of overkill). The single rail keeps me from having to figure out how to balance the load across the connections. A modular PSU lets me use only the power connectors I actually need. I have picked the SeaSonic X Series 1250W 80+ Gold Certified Fully-Modular ATX Power Supply. SeaSonic is my favorite PSU vendor at the moment and this is the largest PSU they offer. At worst case, the system would only be pushing this PSU at 58.4% of it's rated load. This PSU sports a 104A single 12V rail. It also has a five-year warranty.
I usually don't go in that much for aesthetics, but that snazzy white, red and black motherboard would look oh so nice in a white case. Even better would be one with some red accents. I came across the Corsair 760T White V2 ATX Full Tower Case, and while it doesn't have any red accents, it's so nice looking that stopped searching. This line of cases are known for being easy to build into. It has plenty of room for the radiator from the CPU cooler, built in 2.5 drive mounts for the SSDs, and the full side window is a nice, unique look. The cost is $170, which is about where the cost of the case in this build usually is. You could always add a set of red LEDs lining the side window for that extra snazziness.
Even though an optical drive is pretty much an optional part nowadays, if we are going to have a 4K monitor with this system, it should be able to play the occasional Blu-ray movie. Since the LG 16X BD-R 2X BD-RE SATA Blu-ray burner (WH16NS40) is just under $60, there's no reason not to have one in a system of this sort. If you find you need to back up 100-128 GB of data on a reasonably permanent medium, this burner can to that - at $12 - $27 a disc.
While I still like discrete sound cards and think they produce better sound than onboard audio, I think this motherboard's solution from Creative is an exception. The onboard sound supplied by this motherboard sounds excellent on paper, and if it doesn't pan out, there's room to add a discrete sound card later.
Take your choice of Windows 8.1 (64-bit) or Windows 10 Home (64-bit). Both are about $90. I have switched from 8.1 to Windows 10 because it has DirectX 12 support for games, and I really just like it better. If you really want Windows 7, but don't have an install disc (or other media) already, be prepared to pay through the nose to get one. It's around $140 for Windows 7 Professional and it seems Windows 7 Home goes for even more. Do get the 64-bit version of whatever operating system you pick.
The prices given below are static and are the ones captured when this was written. Click on the link below the table to load the list into the PC Part Picker system builder.
Component | Description | Cost |
---|---|---|
CPU | Intel Core i7-6700K 4.0GHz Quad-Core | 370 |
CPU Cooler | NZXT Kraken X61 106.1 CFM Liquid | 140 |
Motherboard | Gigabyte GA-Z170X-Gaming 7 ATX LGA1151 | 200 |
GPU |
2 - EVGA GeForce GTX 980 Ti 6GB FTW ACX 2.0+
($640 times two for 2-Way SLI) |
1280 |
Memory | G.Skill TridentZ Series 16GB (2 x 8GB) DDR4-3600 | 155 |
Storage | Samsung 950 PRO 512GB M.2-2280 SSD (MZ-V5P512BW) 2 - Samsung 850 EVO-Series 1TB 2.5" SSD ($260 X 2) |
322 520 |
Sound Card | Stock (motherboard - believe it or not) | 0 |
Optical Drive | LG WH16NS40 Blu-Ray/DVD/CD Writer | 55 |
PSU | SeaSonic X Series 1250W 80+ Gold Certified Fully-Modular | 179 |
Case | Corsair 760T White V2 ATX Full Tower | 170 |
OS | Microsoft Windows 10 Home OEM (64-bit) | 87 |
Total | 3478 |
Wow. My July 2013 build was $4623, and this one comes in at $3478 - a full $1145 difference. I don't feel this is $1100+ less of a system. The SSDs and RAM prices have dropped significantly, which is part of the reduction in the cost. Going with the top-of-the-line Skylake CPU available (at this time) over a Haswell-E CPU save several hundred dollars, and the Gigabyte motherboard save about $350 more. I don't feel anything significant was given up to work with those. We lost two full cores (four thread), 1/2 the PCIe lanes (most of which were going to the GPUs in x16 x16 mode) and quad-channel memory. Even so, most of the benchmarks I've seen put the 6700K right up there with the 5930K. The Skylake-E CPUs are due out in 2016 (Q2 or Q3 are rumored), and will likely return back to six or eight core parts and an LGA 2011-v3 socket.
We did not give up the dual GTX 980 Ti graphics cards in SLI. They would be wasted on less than a 4K monitor, but with good 4K monitors dropping below $700, there's no reason not to have one. We also didn't give up on going with all SSDs. I absolutely, positively won't build another system for myself that isn't using SSDs for booting and the primary storage. I'm able to get by with 1.5TB on my own desktop. With 2.5TB of SSD space, there won't be much of a reason to worry. If more space is needed, there's room for three or four rotating hard disk drives in addition to the SSDs. It's still a lot of money, but I don't think any of it is wasted. To see the current prices for these components, check the link to the PC Part Picker list.